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A LEAST-SQUARE-DISTANCE CURVE-FITTING TECHNIQUE 

By John Q. Howell 
Langley Research Center 

SUMMARY 

A method is presented for fitting a function with n parameters 
y = f(al,a2, . . .,an;x) to a set  of N data points {Gi,yi) in a manner that mini
mizes the sum of the squares of the distances from the data points to  the curve. A 
differential-correction scheme is used to solve for the parameters in an iterative man
ner until the best f i t  is obtained. Two methods for finding the distances from the data 
points to the curve and a listing of the curve-fitting computer program a re  also given. 

INTRODUCTION 

Most of the generally used methods of fitting a curve to a set  of data points mini
mize a function of the vertical distances from the points to the curve. For example, if 
{Zi,ya is a set  of N points and y = f(al,a2, . . .,an;x) is a curve with n, param
e ters ,  then the method of least squares gives values of the parameters that minimize 

N 

i=1 

This may be done by taking partial derivatives with respect to  the parameters and setting 
each of the resulting equations equal to zero; that is, 

-N 
aE- = 0 = - 2  ( j  = 1, 2 , .  . ., n)
a a  

i=1 

This set of n equations, sometimes called the normal equations, is then solved 
for the parameters. As is well known, if f is linear in the parameters,  for example, a 
polynomial in x (ref. l),a set  of simultaneous linear equations merely has t o  be solved. 
However, in general, more complicated functions yield simultaneous equations that are 
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nonlinear. In this case f may be expanded in a truncated Taylor se r ies  about a point 
in parameter space, and in this manner the nonlinear normal equations can be linearized 
and solved by iteration. The end result is a set  of parameters that yields a minimum of 
equation (1). This is called either the Gauss-Newton method or  the method of nonlinear 
least squares. However, when f(x) has a region where its derivative is large o r  when 
both zi and yi have s imilar  e r r o r  bounds, it may be more desirable to  minimize the 
distance from each data point to  its nearest point on the curve. This minimum distance 
is the same as the perpendicular distance from the data point to  the curve. Scarborough 
(ref. 2) gives a method for curve fitting that minimizes the sum of the squares of these 
distances but his method is limited to first-order polynomials. Reed (ref. 3) and Kendall 
and Stuart (ref. 4) give schemes that are applicable to polynomials of higher order. 
These same methods a r e  useful fo r  any function in which the parameters enter in a linear 
fashion. Guest (ref. 5) describes a related technique that minimizes the perpendicular 
distance from each data point to  a straight line tangent to the curve. This tangent is 
taken at the point on the curve having the same x-coordinate as the data point. 

The purpose of the present work is to derive and demonstrate the use of a curve-
fitting technique that minimizes the least-square distances from each data point to the 
curve. The technique described herein works for a general function f and is most 
useful when the function being fitted contains regions where the slope is small  as well as 
where the slope is large. It is also useful when the data points have e r ro r  bounds asso
ciated with both the x- and y-coordinates. In the latter case,  this technique implicitly 
assumes identical e r r o r  for  both coordinates. Generally the data points and the function 
can be scaled so  that this condition is met. Other techniques that a r e  less  time con
suming may also be used in these situations. For example, a judicious choice of weights 
often makes possible the use of a standard least-squares procedure. However, in these 
cases a particular choice of weights seldom works for more than a few sets  of data. The 
technique described herein does not have this disadvantage since it provides a fi t  even 
when all the weights a r e  set  equal to 1. 

SYMBOLS 

defined by equation (10) 

defined by equation (9) 

distance from (%i,Yi)to  nearest point on curve, equations (4) and (16) 

value of Di using old parameters,  equation (6) 
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distance from (?i,fi) to some point on curve, equation (17) 


sum of squares of distances f rom data points to  curve, equations (1)and (3) 


function to be fitted to  data points; y = f(x) 


value of function at iii, equation (2) 


value of function at xi with old parameters,  equation (8) 


number of function parameters 


number of data points 


weight associated with data point (zi,yi) 


coordinates of one data point of set  to which y = f(x) is being fitted 


coordinates of point on curve nearest data point (Zi,ui) 


* . ,an parameters  of y = f(x) 

A .,an old parameters of y = f(x) during iteration t o  find least-square
distance fit 

root-mean-square deviation of data points from curve, equation (14) 

DERIVATION AND DISCUSSION O F  NEW TECHNIQUE 

There is given a set of N data points (Si,?$ t o  which is to  be fitted the function 
y = f(al,a2,. . .,an; x), where a l , a 2 ,  . . .,an a r e  parameters. To obtain this f i t  the 
sum of the least-square distances (sum of the squares of the shortest distances) from 
the data points to the curve must be minimized. By using one of the techniques given in 
appendix A, the coordinates (xi,yi) a r e  found fo r  the point on the curve that is nearest 
each data point (.zi,yi). Then it is desired to minimize 
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where the distance from the ith data point to  the curve is 

The weight t o  be associated with each point is given by Wi. To minimize equation (3) it 
is necessary to  solve the set  of n normal equations 

( j  = 1, 2 , .  . ., n) (5) 

In general this is a set of nonlinear simultaneous equations. To solve the set ,  an 
iterative procedure sometimes called the method of differential correction can be used. 
First a Taylor se r ies  expansion of Di is made about some point (&1,6~,. . .,&) in 
parameter space. Since Di is a known function of the parameters,  the expansion can 
easily be written 

and 

Now in equation (6) all higher order te rms  a re  dropped and only the te rms  that a r e  linear 
in Aa a r e  kept. Then substitution of equation (6) into equation (5) gives 

(j = 1, 2, . . .,n) 

Also, equation (4) yields 

where 
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Now, by definition, 

and 

and equation (7) then becomes 

n 

Bj = 1Ajk ACYk (j = 1, 2 ,  . . .,n) (11) 
k=1 

The equations needed to  f i t  the curve y = f(al,a2,. . .,an; x)  to  the set of 
N points {?i,y$ have now been derived. To use this procedure, a starting point in 
parameter space is first chosen and designated (&1,g2,. . .,&n). Next the distances 
from each data point t o  the curve a r e  found by using perhaps one of the techniques out
lined in appendix A. Then Bj and Ajk are found from equations (9) and (10) and the 
simultaneous linear equations in equations (11) a r e  solved for the quantities 
A a l ,  ha2, . . .,A@,. Lastly, the new parameters a r e  obtained from 

( k =  1, 2, . . ., n) (12) 

This set  of new parameters is then used as a new starting point and the cycle repeated. 
This iteration is carried out until (ilk converges ( h a k  <<< a k )  o r  until it is obvious that 
a convergence will not be achieved. In the latter case a better starting point in param
eter space generally leads to  convergence. It should be pointed out that the point in 
parameter space to  which equations (9) t o  (11) converge may not be an absolute minimum, 
that is, the best f i t .  The end point of the process may be either a relative maximum o r  
a relative minimum. The former case is rather unlikely but at any rate is easily detected 
by inspection of the value of equation (3) after each iteration. In the latter case a new 
starting point in parameter space must be chosen to  see if convergence is achieved t o  a 
point where a smaller value of equation (3) is obtained. Unfortunately, it is in general 
difficult t o  tell when the best f i t  has been found, but once a f i t  sufficient for the particular 
need is located, it is not necessary to  search farther. 
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EXAMPLES OF APPLICATION OF NEW TECHNIQUE 

The two examples given herein a r e  chosen to  demonstrate that for some cases 
the least-square-distance curve-fitting technique gives better results than the standard 
least-squares method, The first example arose when the author was trying t o  reduce 
some experimental plasma-physics data and led ultimately to the least-square-distance 
curve-fitting technique described in this paper, The second example is chosen since it is 
commonly known that standard least-squares procedures do not work well on this type 
of function. For the examples presented here the weights a re  set  equal to one. By prop
er ly  choosing the weights it may be possible to obtain a f i t  with the least-squares tech
nique that is as good as that obtained with the least-square-distance method. However, 
for a different function and often for a different set  of data points, a new set of weights 
would have to be chosen to achieve a good f i t  again. The least-square-distance technique 
described in this report does not have this disadvantage. 

Because of the extra computations involved in finding the closest point on the ‘curve, 
the least-square-distance method takes more computer time than the least-squares 
method. Based on the following two examples it is determined that the least-square
distance method is longer by a factor of approximately 2.5. 

Example I 

Example I is taken from the field of plasma physics where a common diagnostic 
tool is the Langmuir probe. The current versus voltage characteristic of this probe is 
given approximate1y by 

y = a1x2 + a2x + a3 + a4e  5x 

where x is the voltage, y is the current, and a1,a2, . . .,a5 a r e  a set of adjustable 
parameters. The parameters a 4  and a 5  a re  always positive so the exponential t e rm 
is large for x positive and small  for  x negative. 

When the Langmuir probe is used as a diagnostic tool, the current is typically mea
sured for a large set  of voltage points. Then some curve-fitting technique is used to  
obtain a f i t  to the experimental data. The value of a5 is of interest as the electron 
temperature can be obtained from it. This temperature is then used to calculate a par
ticular voltage in the region where the exponectial t e rm is small and the fitted function 
is used to obtain the corresponding current. The ion density can then be obtained from 
this current. From this description it is apparent (1)that both x and y may be in 
e r r o r  and (2) the f i t  to the experimental data must be good both in regions where the 
exponential t e rm is large and where it is small. 
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Figure 1 shows the f i t  that is obtained in one particular case by using the nonlinear
least-squares technique. The values of the parameters and the weighted root-mean
square deviation obtained by the curve-fitting schemes a r e  shown in the legend of the fig
ure. The weighted root-mean-square deviation is defined by 

( T =  

t I I I I I 

5 


4 

3 


y .  

2 

1 
y = f(x1 \O/ 

o /  
0 


-1 I I 1 I I 
-5 -4 -3 -2 -1 0 1 2 

X 


Figure 1.- Nonlinear-least-squares fit used with equation (13) .  = -0.2034; a2 = -1.166; 
= -1.424; u4 = 3.750; as = 2.028; u = 3.3. 
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where Di is the vertical distance in the case of the least-squares technique and the 
shortest distance from the point to the curve for the least-square-distance method. The 
least-squares f i t  for  x negative is not acceptable (fig. 1)but the fi t  is good for x posi
tive where the exponential t e rm is large. 

The same set  of data points is then used in a program based on the least-square
distance technique derived in the present paper. The result of this f i t  is shown in fig
ure  2. It is immediately apparent that the fit’is much better and is in fact good enough 
to  extract the desired information for the further data analysis as described earlier.  
The legends of figures 1and 2 show that only a5 agrees to  within 20 percent. As 

5 

4 

3 

Y 

2 

1 

0 

-1 

-5 

- 1 I I 

J I I I I 1 1 
-4 -3 -2 -1 0 1 2 

X 

Figure 2.- Least-square-distancefit used with equation (13) and same data points 
as in figure 1. al = 0.05013; a2 = 0.3994; a3 = 0.5654; a4 = 2.398; 
9= 2.2611; G = 0.077. 
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would be expected from a comparison of figures 1 and 2, the coefficients of the polyno
mial portion of the function are in violent disagreement. The reason the least-squares 
technique does not do so well is that it finds a f i t  that is good in the high-slope and high-
magnitude region at the expense of the f i t  in the small-slope and small-magnitude region. 

Example 11 

Example II is chosen t o  show that the least-square-distance curve-fitting technique 
fits functions with a singularity. The function chosen is 

y = a1x3 + a2x2 + a3x + a4 + -a5 x - 25 

In figure 3 the results of the nonlinear-least-squares curve-fitting scheme are  
shown. The values of the parameters and the weighted root-mean-square deviation of 
the points from the curve are shown in the legend of the figure. The least-square
distance fit of the same function to the same points is shown in figure 4. A s  in example I ,  
the f i t  to  the small-magnitude points is better when the least-square-distance technique 
is used while both methods give s imilar  fits for  the large-magnitude points. In 
example I1 the initial parameter guess for the least-square-distance method is more 
critical than usual. With a bad initial guess both distance-finding techniques described 
in appendix A sometimes achieve convergence to  a point on the wrong side of the singu
lari ty.  This can also happen if the fitting function has a very sharp peak, in which case 
the distance-finding scheme may achieve convergence to a point on the wrong side of the 
peak. Of course, if it is desired to  f i t  a function of this type to  several sets  of data, the 
program can be designed to alleviate this problem, but the fitting routine has to be dif
ferent for each particular function. 

CONCLUDING REMARKS 

In the present paper the least-square-distance curve-fitting method is derived and 
examples of its use a r e  presented. This technique fits a function with n parameters 
y = f{al,a2,. . .,an; x) to  a set  of N data points ei,y$by minimizing the sum of 
the squares of the distances from the data points to  the curve. A differential-correction 
scheme is used to  solve for the parameters in an iterative manner until the best f i t  is 
obtained. Two examples of the use of this technique a r e  presented, both involving func
tions having large slope variations. In both cases the least-squares f i t  is found to be 
lacking when compared to  the least-square-distance f i t .  It is found that the least-squares 
technique fits the curve to  points in the regions of large slope and large magnitude at the 
expense of the f i t  in regions of small  slope and small  magnitude. This does not happen 
for the least-square-distance method presented in this paper since the sum of the squares 
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Figure 3 . - Nonlinear-least-squaresfit used with equation (15). a1 = O.OOO8l9; 
= -0.06442; a3 = 0.9939; a4 = 3.886; a5 = -12.75; 0 = 2.6. 
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Figure 4.- Least-square-distance fit used with e q u a t i a  (155)and same data points 
as i n  figure 3 .  ul = 0.000709; u2 = -0.03129; u3 = 0.5789; “4 = 6.147; 
u5 = -14.04; CI = 0.21. 
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of the distances from the data points to  the curve is minimized. Hence, for functions of 
this type the least-square-distance technique fits a function to a set of points more accu
rately than the least-squares method, unless much time is spent in customizing the 
least-squares weights to  the particular function and particular set of data. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Hampton, Va., June 10, 1971. 
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APPENDIX A 

TWO NUMERICAL METHODS FOR FINDING THE DISTANCE 

FROM A POINT TO A CURVE 

In appendix A two methods a re  presented for finding the distance from the data 
point (Zi,yi) to  the curve y = f(x). The first method minimizes the distance from the 
curve to  the data point, while the second method finds the perpendicular from the curve 
to the data point. Both these methods locate the point on the curve k i , f ( X i g  nearest 
the data point. The distance from the data point to the curve is then given by 

For some very simple cases this point can be found analytically but the assumption is 
made here that f(x) is of such complexity that this is impossible. 

Method I 

The distance from some point on the curve y = f(x) to  the data point ( is 

Di(x) = ([f(x) - fd2 + (X - %i)2)1'2 
Now an x such that Di is minimum may be found by solving 

mi 0-= 
dx 

For the case of Di # 0 (for Di = 0,  the trivial solution is xi = Zi and yi = yi), it is 
seen from equation (18) that xi must satisfy the equation 

Once xi is found, yi is obtained from yi = f(xi), and equation (16) is used to  find Di. 
Equation (19) can be solved by any convenient method. For cases where the second 
derivative of f(x) is obtainable, the author has used the Newton-Raphson method with 
good success. It should be kept in mind that in some cases  the solution of equation (19) 
may yield a Di that is a relative maximum or a relative minimum instead of the abso
lute minimum that is desired. Fortunately these cases  a r e  rare. 
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APPENDIXA - Concluded 

Method II 

The second method may be called the method of successive tangents and does not 
require higher derivatives of f(x). Consequently it is much more useful for complicated 
functions. To use this method a point on the curve is initially chosen near where the 
closest point is thought t o  be. This initial guess may be designated Lki,f(xifl and a 
straight line fitted through this point tangent to the curve. This can be done by using 
either f(xi) and f ' ( X i )  or f(xi) and f(xi + A x ) .  In the latter case Ax is some 
small  arbitrari ly chosen increment. Once the straight line is found, a perpendicular is 
dropped to it from the data point (%i,fi). A better estimate of the closest point on the 
curve is now obtained by letting the new X i  be the x-coordinate of the foot of the per
pendicular on the straight line. Then a second straight line tangent to the curve may be 
fitted through the new point ki,f(xi)l. This process is repeated until two successive 
xi's agree to within some previously chosen increment. For cases where f'(x) is 
easily obtained the author has used this scheme with good success. If the Newton-
Raphson method is used with the first  method and if f"(x) is zero these two methods 
a r e  equivalent. 
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APPENDIX B 

COMPUTER PROGRAM FOR LEAST-SQUARE -DISTANCE TECHNIQUE 

Appendix B contains a description and listing of a least-square-distance curve-
fitting program written in FORTRAN. The procedure for finding the distance from the 
data point t o  the curve is built into the curve-fitting subroutine. The method used is the 
successive-tangent method described in appendix A. The curve-fitting subroutine also 
has a damping procedure (ref. 6) included for increased stability. This program has 
operated satisfactorily for the author with several  different functions but has not been 
tested extensively. 

Main Program 

It is felt that a description of the main program is not needed since any potential 
user  has to  write the main program around his own particular application. 

Least-Square-Distance C:irve- Fitting Subroutine 

This subroutine assumes the existence of a linear-simultaneous-equation solver 
called SIMSOL. It is called by the statement 

Call SIMSOL(A,B,M) 

and solves the equation in M unknowns given by AX=B. The solution vector for X is 
returned in B. The curve-fitting subroutine also calls the subroutine FUNC described 
subsequently. A description of the calling procedure for the curve-fitting subroutine 
follows. 

Use:  Call LSD(X,Y,W,N,AL,M,ERR,RMS) 

Vectors containing x- and y-coordinates of data points to  which function 
Y”> is being fitted. 

W Vector containing weight associated with each point. 

N The number of points being supplied to  subroutine by main program. 

AL Vector containing values of function parameters.  Initially a trial set must 
be supplied. The curve-fitting subroutine iterates and returns a better 
set. 

M The number of parameters in function being fitted. 

15 
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APPENDIX B - Continued 

ERR An e r r o r  criterion that must be supplied t o  subroutine by main program. 
The subroutine i terates until RMSold - RMSnew < ERR * RMSnew. 

RMS Weighted root-mean-square deviation of data points from curve defined by 

where Di is distance of ith point from nearest point on curve. 

Restrictions: (1) X,Y and W a re  all dimensioned 50 and hence N 2 50. 

(2) AL is dimensioned 10 and hence M 5 10. 

(3) A linear-simultaneous -equation solver must be provided as 
described previously. 

(4) A subroutine called FUNC containing information about the function 
must be supplied. An example is described next. 

Description of Subroutine FUNC 

The subroutine FUNC contains information about the function being fitted. This 
subroutine is called by the curve-fitting subroutine described previously. The subroutine 
listing included herein is used to f i t  equation (13) to a set  of data points as shown in fig
ure  2 and is intended t o  be an example of how this subroutine may be written. 

Use: Call FUNC(X,Y ,N,AL , D E  R ,DE R) 

X Vector containing values of independent variable. 

Y Vector used to return values of dependent variable to  curve-fitting sub
routine. For example, Y(1) must contain the value of the function 
evaluated at X(1) for I = 1 to I = N. 

N The number of X values being supplied to  subroutine. If N = 1 only X(l) 
is supplied and the value of the function and its x-derivative must be 
returned in Y(l)and XDER, respectively. For other values of N, both 
Y and DER must be filled and D E R  need not be calculated. 

AL Current values of function parameters being supplied to  FUNC by LSD. 
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XDER 

DER 

Restrictions: 

APPENDIX B - Continued 

Variable containing value of x-derivative of function evaluated at X(1). 
It need be calculated only when N = 1. 

Matrix containing derivatives of function with respect to all function 
parameters,  each evaluated at X(I), for I = 1to I = N. This matrix 
must be filled by FUNC whenever N > 1. The defining equation is 

where aK is Kth function parameter. 

(1) X and Y a r e  dimensioned 50 so N 6 50. 


(2)AL is dimensioned 10. 


(3)DER is dimensioned (10,50). 
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APPENDIX B - Continued 

C 
C 

C 
C 

C M A I N  PROGRAM 
C 
C 
C 

C THIS PROGRAM R E A D S  THE I N I T I A L  G U E S S  A T  THE P A R A M E T E R S  A N D  THE D A T A  


C P O l N T S  AND THEN C A L L S  THE L E A S T  S Q U A R E  D I S T A N C E  C U R V E  F I T T E R .  
C 

C 


PROGRAM C F I T ( I N P U T r 0 U T P U T )  
D I M E N S I O N  X ( 5 O ) . Y ( 5 0 ) . W ( 5 0 ) r A L ( l O )  
E R R =  1 E-5 

1 R E A D  1 0 0 0 r M 1 ( A L ( I ) r I = l r M )  
1000 F O R M A T ( I 2 r / ( E I O ) )  

R E A D  10BlrN~(X(I)rY(I)rW(I)rI~l*N) 
1001 	F O R M A T ( I 2 / (  3E10 ) )  

C A L L  L S D ( X r Y r W r N r A L r M r E R R I R M S )  
GO T O  1 
END 

C 
C 
C 
C 
C L E A S T  S Q U A R E  D I S T A N C E  C U R V E  F I T T I N G  S U B R O U T I N E  


C 

C 

c 
C 

SUBROUT I NE L S D  ( X I  Y W Nr A L  r M ERR* RMS ) 
C 

C T H I S  I S  A L E A S T  S Q U A R E  OJSTANCE C U R V E  F I T T I N G  S U B R O U T I N E .  

C I T  H A S  B U I L T  I N  THE S U C E S S f V E  T A N G E N T  L INE SCHEME T O  FIND THE 

C D I S T A N C E  FROM A D A T A  P O I N T  T O  THE CURVE. 

C I T  C A L L S  S I M S O L ( A * B r M )  T O  S O L V E  T H E  L I N E A R  S I M U L T A N E O U S  E Q U A T I O N  


c A X = B  I N  M UNKNOWNS. 

C I T  	C A L L S  FU N C  T O  O B T A I N  I N F O R M A T I O N  A B O U T  T H E  F U N C T I O N  B E I N G  F I T T E D .  
D!MENSI O N  X ~ 5 0 ) r Y ~ 5 O ~ r W ~ 5 ~ ) r A L ~ l 0 ) r D ~ 1 0 ~ 5 0 ) ~ B ~ 1 0 ~ ~ A ~ 1 0 ~ 1 0 ~  
D IMENS I O N  D I S t 5 0 ~ ~ X 1 ~ 5 0 ~ r W 2 ~ 5 0 ~ r l D ( 2 ~ r Y 1 ( S O ) . D X ~ 5 0 ~  

C 

C I F  IPRINT=OI  T H E R E  I S  NO P R I N T E O  O U T P U T  F R O M  T H I S  S U B R O U T I N E *  


I P R I N T = O  
I PR I NT= 2 
T R M S = l  *E10 
I D  ( 1 ) = 1 OHCONVERGED 
I D ( E ) = I O H  
D O  2 I C l r N  

2 DX(I)=O* 

C 
C S T A R T  T T E R A T I O N  

D O  100 I T E R = l  r 100 
C 

C F I N D  C L O S E S T  P O I N T S  O N  C U R V E  

5 DO 30 I=frN 
w 2  c I) = w (  I P 
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APPENDIX B - Continued 

C F IND C L O S E S T  P O I N T  G I V E N  A N  I N D I V I D U A L  D A T A  P O I N T  
DO 10 K Z l . 5 0  
I F ( A B S ( W ( I ) ) . L T . I . E - 9 ) C O  T O  20 
X T = X (  I ) + D X (  I )  

C A L L  F U N C ( X T * Y l r l r A L * X D E R I D )  

D Y = Y ( I ) - Y I  ( 1  1 
D X T ~ ( - D X ( I ) + D Y * X D E R ) / ( I . + X D E R + + 2 )  

C 

C THE NEXT 3 CARDS PREVENT OVERSHOOT B Y  D E C R E A S I N G  THE INCREMENT.  

C T H I S  G I V E S  I N C R E A S E D  S T A B I L I T Y  A T  THE E X P E N C E  OF I N C R E A S E D  


C CONVERGENCE T I M E .  
T T = 2  . 
I F ( A R S ( D X ( I ) ) . G T . I . E - ~ ) T T ~ A ~ S ~ D X ( I ) )  
DX(I)=DX(I)+DXT/(l.+TT**5) 

T = A B S ( O Y ) + A B S ( D X ( I ) )  
IF(A~S(DXT)~LTeABS(l~E-4*DX(X))~OR~T~LT~l~E-8)GO 
T O  20 

10 C O N T I N U E  
P R I N T  1005 

1005 F O R M A T ( *  S H O R T E S T  D I S T A N C E  N O T  F O U N D * )  
w 2  ( I  )=0. 

20 CONT 1NU� 
C 
C C L O S E S T  P O I N T  FOUND. NOW F IND D I S T A N C E  

x1 ( I ) = x ( I ) + D x ( I )  
DIS(I)=SQRT(DX(I)**2+DY**2) 

I F ( D I S ( I ) . L T . I . E - B ) D T S o z l . E - 8  

30 CONTINUE 
C 

C C O M P L E T E  S E T  OF C L O S E S T  P O I N T S  AND D l S T A N C E S  F O U N D  

C NOW FIND A NEW S E T  O F  P A R A M E T E R S  


40 


I001 

44 


45 


47 
50 


60 




APPENDIX B - Continued 

C THE NEXT 6 CARDS ARE D E R I V E D  FROM A D A M P I N G  T E C H N I Q U E  THAT INCREASES 
C S T A B I L I T Y  AS MENTIONED I N  THE D E S C R I P T I O N .  IT W I L L  INCREASE 
C CONVERGENCE T I M E  T O  SOME EXTENT. 

T x O o  
DO 65 I = l r M  

65 T=T+B(  I )**2 
UU=.S*DDM/T 
DO 67 I = l  * M  

67 A ( I * I ) = A ( I * I ) + o 5 / W W  
C 

C THE FOLLOWING SUBROUTINE C A L L  SOLVES T H E  L I N E A R  SIMULTANEOUS 

C E Q U A T I O N  G I V E N  B Y  AX=B W I T H  M UNKNOWNS. 


C A L L  S I M S O L ( A * B * M )  
DO 70 I = l * M  

70 A L < I  ) = A L (  I)+E< 1 1  
100 C O N T I N U E  

I D  ( 1 ) = 1OHNOT CONVER 
1D(2)=1OHGED 

110 C O N T I N U E  
I F ( I P R I " T . G E . l ) P R I N T  1 0 0 4 * I D * R M S * E R R * I T E R  

1004 FORMAT( / *  SUBROUTINE L S D  * 2 A 1 0  /* R M S = * E 1 5 * 7 / *  CONVERGENCE C 
* R I T E R I O N = * E l 5 ~ 7 / *  I T E R A T I O N  C O U N T = * I J / )  

I F ( I P R I N T . G E . 2 ) P R I N T  1 0 0 0 ~ ~ X ~ I ~ * Y ~ I ~ ~ X 1 ~ I ~ ~ D I S ~ I ~ ~ W ~ I ) ~ I ~ l ~ N )  
1000 FORMAT(*  X ~ Y I X ~ ~ D I S ~ W = * / ( ~ G I S O ~ ) )  

RETURN 
END 

C 
C 
C 
C 

C SUBROUTINE FUNC C A L L E D  B Y  CURVE F I T T I N G  SUBROUTINE 

C 

C 

C 

C 


SUBROUTINE F U N C ( X * Y  * N * A L * X D E R * D E R )  

C T H I S  SUBROUTINE IS C A L L E D  B Y  L ? D  AND IS FOR THE LANGMUIR PROBE 
C CURRENT VS VOLTAGE FUNCTION. 

D I M E N S I O N  X(50)rY(5O)rDER(10~5O)~AL(lO) 
I F ( N o N E * I  )GO TO 50 

C IF  N n l r  CALCULATE THE F U N C T I O N  AND I T S  X - D E R I V A T I V E  A T  X ( 1 ) .  
x l = x ( l )  

Y ( 1 ) = X I  * ( A L  ( 2  )+AL ( 1 ) + X I  ) + A L  ( 3 ) + A L  ( 4  ) *EXP(  A L  ( 5  ) * X l  1 

XDER =2 * A L  ( 1 1 *X 1+ A L  ( 2 1 + A L  (41 *AL ( 5 ) *EXP ( A L  ( 5  )*X 1 ) 

RETUQN 

50 C O N T I N U E  
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APPENDMB - Concluded 

C IF N NOT = l r  CALCULATE THE F U N C T I O N  AND D E R I V A T I V E S  WITH RESPECT 
C TO A L L  PARAMETERS AT P O I N T S  X ( I ) * I = l r N *  

DO In0 I=I*N 
x I = x ( I )  
T I = E x P ( A L ( S ) * X l  ) 
T = A L ( ~ ) * T I  
x2=x 1*x 1 

Y ( I ) =AL ( 1 )*XE+AL ( 2) * X I  +AL (3)+T 

DER ( l * I ) = X 2  

DER ( 2 * I ) = X 1  

DER ( 3 * I ) = l *  
DER ( 4 r I ) = T l  
DER ( 5 9  I ) = X l * T  

100 CONTINUE 
RETURN 
END 
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